cuda_ml_ols {cuda.ml} | R Documentation |
Train a OLS model.
Description
Train an Ordinary Least Square (OLS) model for regression tasks.
Usage
cuda_ml_ols(x, ...)
## Default S3 method:
cuda_ml_ols(x, ...)
## S3 method for class 'data.frame'
cuda_ml_ols(
x,
y,
method = c("svd", "eig", "qr"),
fit_intercept = TRUE,
normalize_input = FALSE,
...
)
## S3 method for class 'matrix'
cuda_ml_ols(
x,
y,
method = c("svd", "eig", "qr"),
fit_intercept = TRUE,
normalize_input = FALSE,
...
)
## S3 method for class 'formula'
cuda_ml_ols(
formula,
data,
method = c("svd", "eig", "qr"),
fit_intercept = TRUE,
normalize_input = FALSE,
...
)
## S3 method for class 'recipe'
cuda_ml_ols(
x,
data,
method = c("svd", "eig", "qr"),
fit_intercept = TRUE,
normalize_input = FALSE,
...
)
Arguments
x |
Depending on the context: * A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__ specifying a set of preprocessing steps * created from [recipes::recipe()]. * A __formula__ specifying the predictors and the outcome. |
... |
Optional arguments; currently unused. |
y |
A numeric vector (for regression) or factor (for classification) of desired responses. |
method |
Must be one of "svd", "eig", "qr". - "svd": compute SVD decomposition using Jacobi iterations. - "eig": use an eigendecomposition of the covariance matrix. - "qr": use the QR decomposition algorithm and solve 'Rx = Q^T y'. If the number of features is larger than the sample size, then the "svd" algorithm will be force-selected because it is the only algorithm that can support this type of scenario. Default: "svd". |
fit_intercept |
If TRUE, then the model tries to correct for the global mean of the response variable. If FALSE, then the model expects data to be centered. Default: TRUE. |
normalize_input |
Ignored when |
formula |
A formula specifying the outcome terms on the left-hand side, and the predictor terms on the right-hand side. |
data |
When a __recipe__ or __formula__ is used, |
Value
A OLS regressor that can be used with the 'predict' S3 generic to make predictions on new data points.
Examples
library(cuda.ml)
model <- cuda_ml_ols(formula = mpg ~ ., data = mtcars, method = "qr")
predictions <- predict(model, mtcars[names(mtcars) != "mpg"])
# predictions will be comparable to those from a `stats::lm` model
lm_model <- stats::lm(formula = mpg ~ ., data = mtcars, method = "qr")
lm_predictions <- predict(lm_model, mtcars[names(mtcars) != "mpg"])
print(
all.equal(
as.numeric(lm_predictions),
predictions$.pred,
tolerance = 1e-3
)
)