Fit Multinomial {cubfits} | R Documentation |
Fit Multinomial Model (Generic)
Description
This generic function estimates b
(mutation (log(mu)) and selection (Delta.t) parameters)
depending on options set by init.function()
.
Usage
fitMultinom(reu13.df, phi, y, n, phi.new = NULL, coefstart = NULL)
Arguments
reu13.df |
an object of format |
phi |
an object of format |
y |
an object of format |
n |
an object of format |
phi.new |
an object of format |
coefstart |
initial value for |
Details
fitMultinom()
fits a multinomial logistic regression via
vector generalized linear model fitting, vglm()
.
By default, for each amino acids, the last codon (order by characters)
is assumed as a based line, and other codons are compared to the based
line relatively.
In MCMC, phi.new
are new proposed expression values and
used to propose new b
. The coefstart
is used to avoid
randomization of estimating b
in vglm()
,
and speed up computation.
Value
A list of format b
is returned which are modified from
the returns of vglm()
. Mainly, it includes
b$coefficient
(parameters in vector
),
b$coef.mat
(parameters in matrix
), and
b$R
(covariance matrix of parameters, *R* matrix in QR decomposition).
Author(s)
Wei-Chen Chen wccsnow@gmail.com.
References
https://github.com/snoweye/cubfits/
Shah P. and Gilchrist M.A. “Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift” Proc Natl Acad Sci USA (2011) 108:10231–10236.
See Also
init.function()
and estimatePhi()
.
Examples
## Not run:
suppressMessages(library(cubfits, quietly = TRUE))
set.seed(1234)
# Convert data.
reu13.list <- convert.reu13.df.to.list(ex.test$reu13.df)
y.list <- convert.y.to.list(ex.test$y)
n.list <- convert.n.to.list(ex.test$n)
# Get phi.pred.Init
init.function(model = "roc")
fitlist <- fitMultinom(ex.train$reu13.df, ex.train$phi.Obs, ex.train$y, ex.train$n)
phi.pred.Init <- estimatePhi(fitlist, reu13.list, y.list, n.list,
E.Phi = median(ex.test$phi.Obs),
lower.optim = min(ex.test$phi.Obs) * 0.9,
upper.optim = max(ex.test$phi.Obs) * 1.1)
## End(Not run)