| Log {ctmm} | R Documentation | 
Log transformation of parameter estimates and their uncertainties
Description
Methods for log transforming individual parameter estimates and their uncertainty estimates for use in meta-analytic regression, and then back-transforming mean-log parameter estimates back to mean parameter estimates.
Usage
Log(x,variable="area",debias=TRUE,...)
Exp(est,VAR.est=0,VAR=0,VAR.VAR=0,variable="area",debias=TRUE,level=0.95,units=TRUE,...)
Arguments
x | 
 A list of   | 
variable | 
 Can be   | 
debias | 
 Apply   | 
... | 
 Further arguments passed.  | 
est | 
 Point estimate of the mean log-parameter.  | 
VAR.est | 
 Uncertainty in the mean log-parameter estimate (square standard error).  | 
VAR | 
 Variance in the log-parameters.  | 
VAR.VAR | 
 Uncertainty in the log-paramter variance estimate (square standard error).  | 
level | 
 Confidence level for parameter estimates.  | 
units | 
 Convert result to natural units.  | 
Value
Log returns a list with two slots, log and VAR.log, corresponding to the point estimates and variance estimates of the logged variables.
Exp returns a confidence intervals for the back-transformed mean parameter estimate.
Author(s)
C. H. Fleming.
See Also
Examples
# load package and data
library(ctmm)
data(buffalo)
# fit movement models
FITS <- AKDES <- list()
for(i in 1:length(buffalo))
{
  GUESS <- ctmm.guess(buffalo[[i]],interactive=FALSE)
  # use ctmm.select unless you are certain that the selected model is OUF
  FITS[[i]] <- ctmm.fit(buffalo[[i]],GUESS)
}
# calculate AKDES on a consistent grid
AKDES <- akde(buffalo,FITS)
# extract 95% areas
AREAS <- lapply(AKDES,summary)
# log transform for further meta-analysis
LOG <- Log(AREAS)
LOG