gmEM {ctmcd} | R Documentation |
Expectation-Maximization Algorithm
Description
Function for deriving a Markov generator matrix estimate by an instance of the expectation-maximization algorithm (described by Bladt and Soerensen, 2005)
Usage
gmEM(tmabs, te, gmguess, eps = 1e-06, niter = 10000, expmethod = "PadeRBS",
verbose = FALSE)
Arguments
tmabs |
matrix of absolute transition frequencies |
te |
time elapsed in transition process |
gmguess |
initial guess (for generator matrix) |
eps |
stop criterion: stop, if relative change in log-likelihood is smaller than eps |
niter |
stop criterion: maximum number of iterations |
expmethod |
method for computation of matrix exponential, by default "PadeRBS" is chosen (see |
verbose |
verbose mode |
Details
A maximum likelihood generator matrix estimate is derived by an instance of the expectation-maximization algorithm.
Value
generator matrix estimate
Author(s)
Marius Pfeuffer
References
M. Bladt and M. Soerensen: Statistical Inference for Discretely Observed Markov Jump Processes. Journal of the Royal Statistical Society B 67(3):395-410, 2005
Examples
data(tm_abs)
## Initial guess for generator matrix (absorbing default state)
gm0=matrix(1,8,8)
diag(gm0)=0
diag(gm0)=-rowSums(gm0)
gm0[8,]=0
## Derive expectation-maximization algorithm generator matrix estimate
gmem=gmEM(tmabs=tm_abs,1,gmguess=gm0,verbose=TRUE)
gmem