set_csfmt_rts_data_v1 {cstidy} | R Documentation |
Convert data.table to csfmt_rts_data_v1
Description
set_csfmt_rts_data_v1
converts a data.table
to csfmt_rts_data_v1
by reference.
csfmt_rts_data_v1
creates a new csfmt_rts_data_v1
(not by reference) from either a data.table
or data.frame
.
Usage
set_csfmt_rts_data_v1(x, create_unified_columns = TRUE, heal = TRUE)
csfmt_rts_data_v1(x, create_unified_columns = TRUE, heal = TRUE)
Arguments
x |
The data.table to be converted to csfmt_rts_data_v1 |
create_unified_columns |
Do you want it to create unified columns? |
heal |
Do you want to impute missing values on creation? |
Details
For more details see the vignette:
vignette("csfmt_rts_data_v1", package = "cstidy")
Value
An extended data.table
, which has been modified by reference and returned (invisibly).
No return value, called for side effect of replacing the current data.table with a csfmt_rts_data_v1 in place.
Returns a duplicated csfmt_rts_data_v1.
Smart assignment
csfmt_rts_data_v1
contains the smart assignment feature for time and geography.
When the variables in bold are assigned using :=
, the listed variables will be automatically imputed.
location_code:
granularity_geo
country_iso3
isoyear:
granularity_time
isoweek
isoyearweek
season
seasonweek
calyear
calmonth
calyearmonth
date
isoyearweek:
granularity_time
isoyear
isoweek
season
seasonweek
calyear
calmonth
calyearmonth
date
date:
granularity_time
isoyear
isoweek
isoyearweek
season
seasonweek
calyear
calmonth
calyearmonth
Unified columns
csfmt_rts_data_v1
contains 16 unified columns:
granularity_time
granularity_geo
country_iso3
location_code
border
age
sex
isoyear
isoweek
isoyearweek
season
seasonweek
calyear
calmonth
calyearmonth
date
See Also
Other csfmt_rts_data:
expand_time_to()
,
identify_data_structure()
,
remove_class_csfmt_rts_data()
,
unique_time_series()
Examples
# Create some fake data as data.table
d <- cstidy::generate_test_data(fmt = "csfmt_rts_data_v1")
d <- d[1:5]
# convert to csfmt_rts_data_v1 by reference
cstidy::set_csfmt_rts_data_v1(d, create_unified_columns = TRUE)
#
d[1, isoyearweek := "2021-01"]
d
d[2, isoyear := 2019]
d
d[3, date := as.Date("2020-01-01")]
d
d[4, c("isoyear", "isoyearweek") := .(2021, "2021-01")]
d
d[5, c("location_code") := .("norge")]
d
# Investigating the data structure of one column inside a dataset
cstidy::generate_test_data() %>%
cstidy::set_csfmt_rts_data_v1() %>%
cstidy::identify_data_structure("deaths_n") %>%
plot()
# Investigating the data structure via summary
cstidy::generate_test_data() %>%
cstidy::set_csfmt_rts_data_v1() %>%
summary()