corr_plot {cspp} | R Documentation |
Create correlation plots of CSPP data
Description
corr_plot
takes CSPP data from get_cspp_data
and returns
either a correlation matrix or correlation plot.
Usage
corr_plot(
data = NULL,
vars = NULL,
summarize = TRUE,
labels = TRUE,
label_size = 3,
colors = c("#6D9EC1", "#FFFFFF", "#E46726"),
cor_matrix = FALSE
)
Arguments
data |
A dataframe. If data is generated by |
vars |
Default is NULL. If left NULL, uses all variables within the passed dataframe. Otherwise, must be a character vector. The dataframe is subset based on variables listed. |
summarize |
Default is TRUE. If TRUE, and if the variable |
labels |
Default is TRUE. If TRUE, the correlation plot will include labels for the correlation value. If FALSE, no labels will be present. |
label_size |
Default is 3. Controls the size of the font for labels. |
colors |
Specify the colors to be used in the correlation plot. Must include three values in a character vector format. The default values are 'c("#6D9EC1", "#FFFFFF", "#E46726")'. |
cor_matrix |
Default is FALSE. If set to TRUE, instead of returning a
ggplot object that is a correlation plot, returns a correlation matrix.
This is particularly useful if you want to customize the output with
|
Details
This function is a wrapper that passes a dataframe to the
ggcorrplot::ggcorrplot
function which generates correlation heat
plots.
Value
ggplot2 object or correlation matrix
See Also
ggcorrplot
Examples
corr_plot(data = get_cspp_data(), vars = c("pollib_median",
"innovatescore_boehmkeskinner", "citi6013", "ranney4_control", "h_diffs"),
cor_matrix = FALSE)