signal_detection_hlm {csalert} | R Documentation |
Determine the short term trend of a timeseries
Description
The method is based upon a published analytics strategy by Benedetti (2019) <doi:10.5588/pha.19.0002>.
Usage
signal_detection_hlm(x, ...)
## S3 method for class 'csfmt_rts_data_v1'
signal_detection_hlm(
x,
value,
baseline_isoyears = 5,
remove_last_isoyearweeks = 0,
forecast_isoyearweeks = 2,
value_naming_prefix = "from_numerator",
remove_training_data = FALSE,
...
)
Arguments
x |
Data object |
... |
Not in use. |
value |
Character of name of value |
baseline_isoyears |
Number of years in the past you want to include as baseline |
remove_last_isoyearweeks |
Number of isoyearweeks you want to remove at the end (due to unreliable data) |
forecast_isoyearweeks |
Number of isoyearweeks you want to forecast into the future |
value_naming_prefix |
"from_numerator", "generic", or a custom prefix |
remove_training_data |
Boolean. If TRUE, removes the training data (i.e. 1:(trend_isoyearweeks-1)) from the returned dataset. |
Value
The original csfmt_rts_data_v1 dataset with extra columns. *_trend*_status contains a factor with levels c("training", "forecast", "decreasing", "null", "increasing"), while *_doublingdays* contains the expected number of days before the numerator doubles.
Examples
d <- cstidy::nor_covid19_icu_and_hospitalization_csfmt_rts_v1
d <- d[granularity_time=="isoyearweek"]
res <- csalert::signal_detection_hlm(
d,
value = "hospitalization_with_covid19_as_primary_cause_n",
baseline_isoyears = 1
)
print(res[, .(
isoyearweek,
hospitalization_with_covid19_as_primary_cause_n,
hospitalization_with_covid19_as_primary_cause_forecasted_n,
hospitalization_with_covid19_as_primary_cause_forecasted_n_forecast,
hospitalization_with_covid19_as_primary_cause_baseline_predinterval_q50x0_n,
hospitalization_with_covid19_as_primary_cause_baseline_predinterval_q99x5_n,
hospitalization_with_covid19_as_primary_cause_n_status
)])