wage1 {crs} | R Documentation |
Cross-Sectional Data on Wages
Description
Cross-section wage data consisting of a random sample taken from the U.S. Current Population Survey for the year 1976. There are 526 observations in total.
Usage
data("wage1")
Format
A data frame with 24 columns, and 526 rows.
- wage
column 1, of type
numeric
, average hourly earnings- educ
column 2, of type
numeric
, years of education- exper
column 3, of type
numeric
, years potential experience- tenure
column 4, of type
numeric
, years with current employer- nonwhite
column 5, of type
factor
, =“Nonwhite” if nonwhite, “White” otherwise- female
column 6, of type
factor
, =“Female” if female, “Male” otherwise- married
column 7, of type
factor
, =“Married” if Married, “Nonmarried” otherwise- numdep
column 8, of type
numeric
, number of dependents- smsa
column 9, of type
numeric
, =1 if live in SMSA- northcen
column 10, of type
numeric
, =1 if live in north central U.S- south
column 11, of type
numeric
, =1 if live in southern region- west
column 12, of type
numeric
, =1 if live in western region- construc
column 13, of type
numeric
, =1 if work in construc. indus.- ndurman
column 14, of type
numeric
, =1 if in nondur. manuf. indus.- trcommpu
column 15, of type
numeric
, =1 if in trans, commun, pub ut- trade
column 16, of type
numeric
, =1 if in wholesale or retail- services
column 17, of type
numeric
, =1 if in services indus.- profserv
column 18, of type
numeric
, =1 if in prof. serv. indus.- profocc
column 19, of type
numeric
, =1 if in profess. occupation- clerocc
column 20, of type
numeric
, =1 if in clerical occupation- servocc
column 21, of type
numeric
, =1 if in service occupation- lwage
column 22, of type
numeric
, log(wage)- expersq
column 23, of type
numeric
, exper^2
- tenursq
column 24, of type
numeric
, tenure^2
Source
Jeffrey M. Wooldridge
References
Wooldridge, J.M. (2000), Introductory Econometrics: A Modern Approach, South-Western College Publishing.
Examples
## Not run:
data(wage1)
## Cross-validated model selection for spline degree and bandwidths Note
## - we override the default nmulti here to get a quick illustration
## (we don't advise doing this, in fact advise using more restarts in
## serious applications)
model <- crs(lwage~married+
female+
nonwhite+
educ+
exper+
tenure,
basis="additive",
complexity="degree",
data=wage1,
segments=c(1,1,1),
nmulti=1)
summary(model)
## Residual plots
plot(model)
## Partial mean plots (control for non axis predictors)
plot(model,mean=TRUE)
## Partial first derivative plots (control for non axis predictors)
plot(model,deriv=1)
## Partial second derivative plots (control for non axis predictors)
plot(model,deriv=2)
## Compare with local linear kernel regression
require(np)
model <- npreg(lwage~married+
female+
nonwhite+
educ+
exper+
tenure,
regtype="ll",
bwmethod="cv.aic",
data=wage1)
summary(model)
## Partial mean plots (control for non axis predictors)
plot(model,common.scale=FALSE)
## Partial first derivative plots (control for non axis predictors)
plot(model,gradients=TRUE,common.scale=FALSE)
detach("package:np")
## End(Not run)