monoTestConfReg {crov} | R Documentation |
Monotonicity test using confidence regions
Description
Tests the null hypothesis of monotonicity over a set of parameters associated to an ordinal predictor. The log-likelihood ratio test is used after imposing ordinal constraints on the parameter estimates of a single ordinal predictor and comparing its results against the unconstrained MLEs.
Usage
monoTestConfReg(formula, data = NULL, monoDir = NULL, SignifLevel = 0.05)
Arguments
formula |
A |
data |
A data.frame, list or environment (or object coercible by |
monoDir |
Vector with monotonicity directions for the ordinal predictors to be used as constraints. Possible values for |
SignifLevel |
Numerical value for the significance level. |
Value
resConfRegTest
: Data frame with columns:
OPName
=Name of the ordinal predictor (OP),
Num_Cat
=Number of categories of the OP,
UMLE_logLik
=log-likelihood of the unconstrained model,
CMLE_logLik
=log-likelihood of the constrained model using mdcp
assuming monotonicity for each OP,
degreesOfFreedom
=degrees of freedom used in the hypothesis test,
Statistic
=value of the statistic,
CritValue
=critical value resulting from the statistic,
SignifLevel
=significance level used in the test,
P.Value
=p-value,
RejectMonotonicity
=TRUE if the null hypothesis of monotonicity is rejected, FALSE otherwise.
See Also
mdcp
,
monoTestBonf
,
confRegUCRandUCCR
,
confRegCCR
,
plotCMLE
,
vlgm
.
Examples
# Ordinal predictors: EduLevel, IncQuint and Health
monoTestConfRegExample <- monoTestConfReg(QoL ~ EduLevel + Age + IncQuint + Gender +
Health, data = crovData, monoDir=c(0,-1,-1), SignifLevel = 0.05)
monoTestConfRegExample$resConfRegTest