confRegCCR {crov} | R Documentation |
Parameter Vector in Confidence Region CCR
Description
Determines whether a parameter vector is in the confidence region CCR, according to the definitions in Espinosa and Hennig (2023) <https://doi.org/10.48550/arXiv.2107.04946>.
Usage
confRegCCR(
CMLE = NULL,
paramVals = NULL,
paramIDs = NULL,
SignifLevel = 0.05,
df,
matY,
matX
)
Arguments
CMLE |
A vector with the constrained maximum likelihood estimates. |
paramVals |
A vector with the parameter values for which it is needed to
assess whether it is part of the confidence region or not.
The order of the parameters must be the same as the one of |
paramIDs |
A vector indicating the positions of the parameter values of
beta_0r in |
SignifLevel |
A decimal number indicating the significant level. Usually, 0.05. |
df |
Degrees of freedom to be used. |
matY |
matY resulting from mdcp(). |
matX |
matX resulting from mdcp(). |
Value
confRegions
: Data frame with columns:
CMLE_logLik
=log-likelihood of the constrained model,
param_logLik
=log-likelihood of the model using paramVals
,
monotonicBeta0
=logical value, TRUE
if the set of parameters
of paramVals
indicated by paramIDs
are monotonic,
df
=degrees of freedom used to calculate the critical value,
StatCCR
=value of the statistic used for CCR
,
CritValue
=critical value, chi-squared with df
and 1-SignifLevel
,
SignifLevel
=significance level used to calculate the critical value,
inCCR
=logical value, TRUE
if paramVals
belongs to the confidence region CCR
,
References
Espinosa, J., and Hennig, C. "Inference for the proportional odds cumulative logit model with monotonicity constraints for ordinal predictors and ordinal response." Arxiv (2023). <https://doi.org/10.48550/arXiv.2107.04946>.
See Also
confRegUCRandUCCR
,
mdcp
,
monoTestBonf
,
monoTestConfReg
,
plotCMLE
,
vlgm
.
Examples
resAux <- mdcp(QoL ~ EduLevel + Age + IncQuint + Gender + Health, data = crovData)
plotCMLE(resAux)
myVector <- resAux$estimates
myVectorID <- 10:12
myVector[myVectorID]
# non-monotonic beta_{0r}
myVector[myVectorID] <- seq(0.195,0.185,length.out=3)
confRegCCR(CMLE=resAux$estimates, paramVals=myVector, paramIDs=myVectorID,SignifLevel=0.05, df=3,
matY= resAux$matY, matX= resAux$matX)
# monotonic beta_{0r} and paramVals in CCR
myVector[myVectorID] <- seq(0.048,0.049,length.out=3)
confRegCCR(CMLE=resAux$estimates, paramVals=myVector, paramIDs=myVectorID,SignifLevel=0.05, df=3,
matY= resAux$matY, matX= resAux$matX)
# monotonic beta_{0r} and paramVals out of CCR
myVector[myVectorID] <- seq(0.047,0.048,length.out=3)
confRegCCR(CMLE=resAux$estimates, paramVals=myVector, paramIDs=myVectorID,SignifLevel=0.05, df=3,
matY= resAux$matY, matX= resAux$matX)