confusionMatrix {crossval} | R Documentation |
Compute Confusion Matrix
Description
confusionMatrix
computes the confusion matrix, i.e. it counts the number of false positives (FP),
true positives (TP), true negatives (TN), and false negatives (FN).
Despite its name the functions returns a vector rather than an actual matrix for easier use with the crossval
function.
Usage
confusionMatrix(actual, predicted, negative="control")
Arguments
actual |
a vector containing the actual correct labels for each sample (e.g. "cancer" or "control"). |
predicted |
a vector containing the predicted labels. |
negative |
the label of a negative "null" sample (default: "control"). |
Value
confusionMatrix
returns a vector of length 4 containing the counts for FP, TP, TN, and FN.
Author(s)
Korbinian Strimmer (https://strimmerlab.github.io).
See Also
Examples
# load crossval library
library("crossval")
# true labels
a = c("cancer", "cancer", "control", "control", "cancer", "control", "control")
# predicted labels
p = c("cancer", "control", "control", "control", "cancer", "control", "cancer")
# confusion matrix (a vector)
cm = confusionMatrix(a, p, negative="control")
cm
# FP TP TN FN
# 1 2 3 1
# attr(,"negative")
# [1] "control"
# corresponding accuracy, sensitivity etc.
diagnosticErrors(cm)
# acc sens spec ppv npv lor
# 0.7142857 0.6666667 0.7500000 0.6666667 0.7500000 1.7917595
# attr(,"negative")
# [1] "control"
[Package crossval version 1.0.5 Index]