crossnma {crossnma} | R Documentation |
Run JAGS to fit cross NMA and NMR
Description
This function takes the JAGS model from an object produced by
crossnma.model
and runs it using jags.model
in
rjags package.
Usage
crossnma(
x,
inits = NULL,
n.adapt = 1000,
n.burnin = floor(n.iter/2),
n.iter = 2000,
thin = max(1, floor((n.iter - n.burnin)/1000)),
n.chains = 2,
monitor = NULL,
level.ma = x$level.ma,
backtransf = x$backtransf,
quiet = TRUE,
n.thin = NULL
)
Arguments
x |
An object produced by |
inits |
A list of lists with |
n.adapt |
Number of adaptations for the MCMC chains. |
n.burnin |
Number of burnin iterations for the MCMC
chains. Default is |
n.iter |
Number of iterations to run each MCMC chain. |
thin |
Thinning for the MCMC chains. Default is max(1, floor((n.iter - n.burnin) / 1000)), that is only thinning if there are more than 2000 iterations. |
n.chains |
Number of MCMC chains. |
monitor |
A character vector of the names of the parameters to be monitored. Basic parameters (depends on the analysis) will be automatically monitored and only additional parameters need to be specified. |
level.ma |
The level used to calculate credible intervals for network estimates. |
backtransf |
A logical indicating whether results should be
back transformed in printouts. If |
quiet |
A logical passed on to |
n.thin |
Deprecated argument (replaced by |
Value
An object of class crossnma
which is a list containing the
following components:
jagsfit |
An "rjags" object produced when rjags package used to run the JAGS model. |
model |
The |
trt.key |
A table of treatment names and their correspondence to integers used in the JAGS model. |
inits , n.adapt , n.burnin , n.iter |
As defined above. |
thin , n.chains |
As defined above. |
call |
Function call. |
version |
Version of R package crossnma used to create object. |
Author(s)
Tasnim Hamza tasnim.hamza@ispm.unibe.ch, Guido Schwarzer guido.schwarzer@uniklinik-freiburg.de
See Also
Examples
## Not run:
# We conduct a network meta-analysis assuming a random-effects
# model.
# The data comes from randomized-controlled trials and
# non-randomized studies (combined naively)
head(ipddata) # participant-level data
stddata # study-level data
# Create a JAGS model
mod <- crossnma.model(treat, id, relapse, n, design,
prt.data = ipddata, std.data = stddata,
reference = "A", trt.effect = "random", method.bias = "naive")
# Fit JAGS model
set.seed(1909)
fit <- crossnma(mod)
# Display the output
summary(fit)
plot(fit)
## End(Not run)