clpm_gamm4_r {crosslag} | R Documentation |
Title Cross-lag analysis based on generalized additive mixture models: autoregression
Description
Title Cross-lag analysis based on generalized additive mixture models: autoregression
Usage
clpm_gamm4_r(xname, yname, data.x1, data.y1, data.xt, data.yt, z)
Arguments
xname |
If cross lagged analysis is used between x and y, 'xname' is the name of x |
yname |
If cross lagged analysis is used between x and y, 'yname' is the name of y |
data.x1 |
A numeric variable. |
data.y1 |
A numeric variable. 'data.x1' and 'data.y1' comes from the first time point |
data.xt |
A numeric variable. |
data.yt |
A numeric variable. 'data.xt' and 'data.yt' comes from the another time point 'data.x1', 'data.y1','data.xt' and 'data.yt' can be the data processed by the function 'adjust_target()' |
z |
In the generalized additive mixture model, a random intercept is specified and the random effects are grouped by z. 'z' and 'data.x1', 'data.y1','data.xt','data.yt' are all numeric variables that should ideally correspond to each other. |
Value
A dataframe containing the result of autoregression based on generalized additive mixture model:'Xt~X1' 'Yt~Y1'.
Examples
data(test_data1)
data(test_data2)
result <- clpm_gamm4_r("ASI","PWRI",test_data1$ASI,test_data1$PWRI,
data.xt = test_data2$ASI,data.yt = test_data2$PWRI,z=test_data1$time)