plot,GeneralSimulations,missing-method {crmPack} | R Documentation |
Plot simulations
Description
Summarize the simulations with plots
Usage
## S4 method for signature 'GeneralSimulations,missing'
plot(x, y, type = c("trajectory", "dosesTried"), ...)
Arguments
x |
the |
y |
missing |
type |
the type of plots you want to obtain. |
... |
not used |
Details
This plot method can be applied to GeneralSimulations
objects in order to summarize them graphically. Possible type
s of
plots at the moment are:
- trajectory
Summary of the trajectory of the simulated trials
- dosesTried
Average proportions of the doses tested in patients
You can specify one or both of these in the
type
argument.
Value
A single ggplot
object if a single plot is
asked for, otherwise a gtable
object.
Examples
##obtain the plot for the simulation results
##If only DLE responses are considered in the simulations
##Specified your simulations when no DLE samples are used
##Define your data set first using an empty data set
## with dose levels from 25 to 300 with increments 25
data <- Data(doseGrid=seq(25,300,25))
##Specified the model of 'ModelTox' class eg 'LogisticIndepBeta' class model
model<-LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),DLEdose=c(25,300),data=data)
##Then the escalation rule
tdNextBest <- NextBestTD(targetDuringTrial=0.35,
targetEndOfTrial=0.3)
## The cohort size, size of 3 subjects
mySize <-CohortSizeConst(size=3)
##Deifne the increments for the dose-escalation process
##The maximum increase of 200% for doses up to the maximum of the dose specified in the doseGrid
##The maximum increase of 200% for dose above the maximum of the dose specified in the doseGrid
##This is to specified a maximum of 3-fold restriction in dose-esclation
myIncrements<-IncrementsRelative(intervals=c(min(data@doseGrid),max(data@doseGrid)),
increments=c(2,2))
##Specified the stopping rule e.g stop when the maximum sample size of 12 patients has been reached
myStopping <- StoppingMinPatients(nPatients=12)
##Now specified the design with all the above information and starting with a dose of 25
design <- TDDesign(model=model,
nextBest=tdNextBest,
stopping=myStopping,
increments=myIncrements,
cohortSize=mySize,
data=data,startingDose=25)
##Specify the truth of the DLE responses
myTruth <- function(dose)
{ model@prob(dose, phi1=-53.66584, phi2=10.50499)
}
## Then specified the simulations and generate the trial
##For illustration purpose only 1 simulation is produced (nsim=1).
##The simulations
mySim <- simulate(design,
args=NULL,
truth=myTruth,
nsim=1,
seed=819,
parallel=FALSE)
##plot the simulations
print(plot(mySim))
##If DLE samples are involved
##The escalation rule
tdNextBest<-NextBestTDsamples(targetDuringTrial=0.35,
targetEndOfTrial=0.3,
derive=function(TDsamples){quantile(TDsamples,probs=0.3)})
##specify the design
design <- TDsamplesDesign(model=model,
nextBest=tdNextBest,
stopping=myStopping,
increments=myIncrements,
cohortSize=mySize,
data=data,startingDose=25)
##options for MCMC
##The simulations
##For illustration purpose only 1 simulation is produced (nsim=1).
# mySim <- simulate(design,
# args=NULL,
# truth=myTruth,
# nsim=1,
# seed=819,
# mcmcOptions=options,
# parallel=FALSE)
#
# ##plot the simulations
# print(plot(mySim))
#
[Package crmPack version 1.0.6 Index]