fitGain {crmPack} | R Documentation |
Get the fiited values for the gain values at all dose levels based on a given pseudo DLE model, DLE sample, a pseudo efficacy model, a Efficacy sample and data. This method returns a data frame with dose, middle, lower and upper quantiles of the gain value samples
Description
Get the fiited values for the gain values at all dose levels based on a given pseudo DLE model, DLE sample, a pseudo efficacy model, a Efficacy sample and data. This method returns a data frame with dose, middle, lower and upper quantiles of the gain value samples
Usage
fitGain(DLEmodel, DLEsamples, Effmodel, Effsamples, data, ...)
## S4 method for signature 'ModelTox,Samples,ModelEff,Samples,DataDual'
fitGain(
DLEmodel,
DLEsamples,
Effmodel,
Effsamples,
data,
points = data@doseGrid,
quantiles = c(0.025, 0.975),
middle = mean,
...
)
Arguments
DLEmodel |
the DLE pseudo model of |
DLEsamples |
the DLE samples of |
Effmodel |
the efficacy pseudo model of |
Effsamples |
the efficacy samples of |
data |
the data input of |
... |
additional arguments for methods |
points |
at which dose levels is the fit requested? default is the dose grid |
quantiles |
the quantiles to be calculated (default: 0.025 and 0.975) |
middle |
the function for computing the middle point. Default:
|
Functions
-
fitGain( DLEmodel = ModelTox, DLEsamples = Samples, Effmodel = ModelEff, Effsamples = Samples, data = DataDual )
: This method returns a data frame with dose, middle, lower, upper quantiles for the gain values obtained given the DLE and the efficacy samples
Examples
##Obtain the 'fitGain' the middle, uppper and lower quantiles for the samples of gain values
## at all dose levels using a pseudo DLE model, a DLE sample, a pseudo Efficacy model and
## a efficacy sample
## data must be from 'DataDual' class
data<-DataDual(x=c(25,50,25,50,75,300,250,150),
y=c(0,0,0,0,0,1,1,0),
w=c(0.31,0.42,0.59,0.45,0.6,0.7,0.6,0.52),
doseGrid=seq(25,300,25),
placebo=FALSE)
## DLE model must be from 'ModelTox' class e.g using 'LogisticIndepBeta' model
DLEmodel<-LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),DLEdose=c(25,300),data=data)
## Efficacy model must be from 'ModelEff' class e.g using 'Effloglog' model
Effmodel<-Effloglog(c(1.223,2.513),c(25,300),nu=c(a=1,b=0.025),data=data,c=0)
## samples must be from 'Samples' class (object slot in fit)
options<-McmcOptions(burnin=100,step=2,samples=200)
##set up the same data set in class 'Data' for MCMC sampling for DLE
data1 <- Data(x=data@x,y=data@y,doseGrid=data@doseGrid)
DLEsamples <- mcmc(data=data1,model=DLEmodel,options=options)
Effsamples <- mcmc(data=data,model=Effmodel,options=options)
fitGain(DLEmodel=DLEmodel,DLEsamples=DLEsamples,
Effmodel=Effmodel, Effsamples=Effsamples,data=data)