Sample {criticality} | R Documentation |
Sample Function
Description
This function samples the Bayesian network and generates keff predictions using a deep neural network metamodel.
Usage
Sample(
bn,
code = "mcnp",
cores = parallel::detectCores()/2,
keff.cutoff = 0.9,
metamodel,
sample.size = 1e+09,
ext.dir,
risk.dir = NULL
)
Arguments
bn |
Bayesian network object |
code |
Monte Carlo radiation transport code (e.g., "cog", "mcnp") |
cores |
Number of CPU cores to use for generating Bayesian network samples |
keff.cutoff |
keff cutoff value (e.g., 0.9) |
metamodel |
List of deep neural network metamodels and weights |
sample.size |
Number of samples used to calculate risk |
ext.dir |
External directory (full path) |
risk.dir |
Risk directory |
Value
A list of Bayesian network samples with predicted keff values
[Package criticality version 0.9.3 Index]