NN {criticality} | R Documentation |
NN Function
Description
This function trains an ensemble of deep neural networks to predict keff values (imports Tabulate, Scale, Model, Fit, Plot, and Test functions).
Usage
NN(
batch.size = 8192,
code = "mcnp",
dataset,
ensemble.size = 5,
epochs = 1500,
layers = "8192-256-256-256-256-16",
loss = "sse",
opt.alg = "adamax",
learning.rate = 0.00075,
val.split = 0.2,
overwrite = FALSE,
remodel = FALSE,
replot = TRUE,
verbose = FALSE,
ext.dir,
training.dir = NULL
)
Arguments
batch.size |
Batch size |
code |
Monte Carlo radiation transport code (e.g., "cog", "mcnp") |
dataset |
Training and test data |
ensemble.size |
Number of deep neural networks in the ensemble |
epochs |
Number of training epochs |
layers |
String that defines the deep neural network architecture (e.g., "64-64") |
loss |
Loss function |
opt.alg |
Optimization algorithm |
learning.rate |
Learning rate |
val.split |
Validation split |
overwrite |
Boolean (TRUE/FALSE) that determines if files should be overwritten |
remodel |
Boolean (TRUE/FALSE) that determines if an existing metamodel should be reused |
replot |
Boolean (TRUE/FALSE) that determines if .png files should be replotted |
verbose |
Boolean (TRUE/FALSE) that determines if TensorFlow and Fit function output should be displayed |
ext.dir |
External directory (full path) |
training.dir |
Training directory (full path) |
Value
A list of lists containing an ensemble of deep neural networks and weights
Examples
ext.dir <- paste0(tempdir(), "/criticality/extdata")
dir.create(ext.dir, recursive = TRUE, showWarnings = FALSE)
extdata <- paste0(.libPaths()[1], "/criticality/extdata")
file.copy(paste0(extdata, "/facility.csv"), ext.dir, recursive = TRUE)
file.copy(paste0(extdata, "/mcnp-dataset.RData"), ext.dir, recursive = TRUE)
config <- FALSE
try(config <- reticulate::py_config()$available)
try(if (config == TRUE) {
NN(
batch.size = 128,
ensemble.size = 1,
epochs = 10,
layers = "256-256-16",
loss = "sse",
replot = FALSE,
ext.dir = ext.dir
)
})