gbm_filter {creditmodel} | R Documentation |
Select Features using GBM
Description
gbm_filter
is for selecting important features using GBM.
Usage
gbm_filter(
dat,
target = NULL,
x_list = NULL,
ex_cols = NULL,
pos_flag = NULL,
GBM.params = gbm_params(),
cores_num = 2,
vars_name = TRUE,
note = TRUE,
save_data = FALSE,
file_name = NULL,
dir_path = tempdir(),
seed = 46,
...
)
Arguments
dat |
A data.frame with independent variables and target variable. |
target |
The name of target variable. |
x_list |
Names of independent variables. |
ex_cols |
A list of excluded variables. Regular expressions can also be used to match variable names. Default is NULL. |
pos_flag |
The value of positive class of target variable, default: "1". |
GBM.params |
Parameters of GBM. |
cores_num |
The number of CPU cores to use. |
vars_name |
Logical, output a list of filtered variables or table with detailed IV and PSI value of each variable. Default is TRUE. |
note |
Logical, outputs info. Default is TRUE. |
save_data |
Logical, save results results in locally specified folder. Default is FALSE. |
file_name |
The name for periodically saved results files. Default is "Feature_importance_GBDT". |
dir_path |
The path for periodically saved results files. Default is "./variable". |
seed |
Random number seed. Default is 46. |
... |
Other parameters to pass to gbdt_params. |
Value
Selected variables.
See Also
psi_iv_filter
, xgb_filter
, feature_selector
Examples
GBM.params = gbm_params(n.trees = 2, interaction.depth = 2, shrinkage = 0.1,
bag.fraction = 1, train.fraction = 1,
n.minobsinnode = 30,
cv.folds = 2)
## Not run:
features = gbm_filter(dat = UCICreditCard[1:1000, c(8:12, 26)],
target = "default.payment.next.month",
occur_time = "apply_date",
GBM.params = GBM.params
, vars_name = FALSE)
## End(Not run)