creditmodel-package {creditmodel} | R Documentation |
creditmodel: toolkit for credit modeling and data analysis
Description
creditmodel provides a highly efficient R tool suite for Credit Modeling, Analysis and Visualization. Contains infrastructure functionalities such as data exploration and preparation, missing values treatment, outliers treatment, variable derivation, variable selection, dimensionality reduction, grid search for hyper parameters, data mining and visualization, model evaluation, strategy analysis etc. This package is designed to make the development of binary classification models (machine learning based models as well as credit scorecard) simpler and faster.
Details
It has three main goals:
creditmodel is a free and open source automated modeling R package designed to help model developers improve model development efficiency and enable many people with no background in data science to complete the modeling work in a short time. Let them focus more on the problem itself and allocate more time to decision-making.
creditmodel covers various tools such as data preprocessing, variable processing/derivation, variable screening/dimensionality reduction, modeling, data analysis, data visualization, model evaluation, strategy analysis, etc. It is a set of customized "core" tool kit for model developers.
'creditmodel' is suitable for machine learning automated modeling of classification targets, and is more suitable for the risk and marketing data of financial credit, e-commerce, and insurance with relatively high noise and low information content.
To learn more about creditmodel, start with the WeChat Platform: hansenmode
Author(s)
Maintainer: Dongping Fan fdp@pku.edu.cn