analysis_nas {creditmodel} | R Documentation |
missing Analysis
Description
#' analysis_nas
is for understanding the reason for missing data and understand distribution of missing data so we can categorise it as:
missing completely at random(MCAR)
Mmissing at random(MAR), or
missing not at random, also known as IM.
Usage
analysis_nas(
dat,
class_var = FALSE,
nas_rate = NULL,
na_vars = NULL,
mat_nas_shadow = NULL,
dt_nas_random = NULL,
...
)
Arguments
dat |
A data.frame with independent variables and target variable. |
class_var |
Logical, nas analysis of the nominal variables. Default is TRUE. |
nas_rate |
A list contains nas rate of each variable. |
na_vars |
Names of variables which contain nas. |
mat_nas_shadow |
A shadow matrix of variables which contain nas. |
dt_nas_random |
A data.frame with random nas imputation. |
... |
Other parameters. |
Value
A data.frame with outliers analysis for each variable.
[Package creditmodel version 1.3.1 Index]