confint_search {crctStepdown} | R Documentation |
Confidence interval search procedure
Description
Search for the bound of a confidence interval using permutation test statistics
Usage
confint_search(
start,
b,
n,
nmodel,
Xnull_,
y,
tr_,
new_tr_mat,
invS,
family,
family2,
Z,
type,
nsteps = 1000L,
weight = TRUE,
alpha = 0.05,
verbose = TRUE
)
Arguments
start |
Numeric value indicating the starting value for the search procedure |
b |
Numeric value indicating the parameter estimate |
n |
Integer indicating the sample size |
nmodel |
Integer. The number of models |
Xnull_ |
Numeric matrix. The covariate design matrix with the treatment variable removed |
y |
Numeric vector of response variables |
tr_ |
Numeric vector. The original random allocation (0s and 1s) |
new_tr_mat |
A matrix. Each column is a new random treatment allocation with 1s (treatment group) and 0s (control group) |
invS |
A matrix. If using the weighted statistic then it should be the inverse covariance matrix of the observations |
family |
|
family2 |
A string naming the link function |
Z |
Matrix. Random effects design matrix describing cluster membership |
type |
String. Either "rw" for Romano-Wolf, "b" or "br" for bonferroni, "h" or "hr" for Holm, or "none" |
nsteps |
Integer specifying the number of steps of the search procedure |
weight |
Logical indicating whether to use the weighted (TRUE) or unweighted (FALSE) test statistic |
alpha |
The function generates (1-alpha)*100% confidence intervals. Default is 0.05. |
verbose |
Logical indicating whether to provide detailed output. |
Value
The estimated confidence interval bound