quasi_sym {cquad} | R Documentation |
Recursive computation of the conditional likelihood for the Quadratic Exponential Model proposed in Bartolucci & Nigro (2010)
Description
Recursively compute the denominator of the individual conditional likelihood function for the Quadratic Exponential Model, adapted from Krailo & Pike (1984).
Usage
quasi_sym(eta,s,dyn=FALSE,y0=NULL)
Arguments
eta |
individual vector of products between covariate and parameters |
s |
total score of the individual |
dyn |
TRUE if in the dynamic version; FALSE for the static version (by default) |
y0 |
Individual initial observation for dynamic models |
Value
f |
value of the denominator |
d1 |
first derivative of the recursive function |
dl1 |
a component of the score function |
D2 |
second derivative of the recursive function |
Dl2 |
a component of the Hessian matrix |
Author(s)
Francesco Bartolucci (University of Perugia), Claudia Pigini (University of Ancona "Politecnica delle Marche"), Francesco Valentini (University of Ancona "Politecnica delle Marche")
References
Bartolucci, F. and Nigro, V. (2010), A dynamic model for binary panel data with unobserved heterogeneity admitting a root-n consistent conditional estimator, Econometrica, 78, 719-733.
Bartolucci, F., Valentini. F., & Pigini, C. (2021), Recursive Computation of the Conditional Probability Function of the Quadratic Exponential Model for Binary Panel Data, Computational Economics, https://doi.org/10.1007/s10614-021-10218-2.
Krailo, M. D., & Pike, M. C. (1984). Algorithm AS 196: conditional multivariate logistic analysis of stratified case-control studies, Journal of the Royal Statistical Society. Series C (Applied Statistics), 33(1), 95-103.