| cquad_pseudo {cquad} | R Documentation | 
Pseudo conditional maximum likelihood estimation of the dynamic logit model
Description
Estimate the dynamic logit model for binary longitudinal data by the pseudo conditional maximum likelihood method proposed by Bartolucci & Nigro (2012).
Usage
cquad_pseudo(id, yv, X = NULL, be = NULL, w = rep(1,n), Ttol=10)
Arguments
id | 
 list of the reference unit of each observation  | 
yv | 
 corresponding vector of response variables  | 
X | 
 corresponding matrix of covariates (optional)  | 
be | 
 initial vector of parameters (optional)  | 
w | 
 vector of weights (optional)  | 
Ttol | 
 Threshold individual observations that activates the recursive algorithm (default=10)  | 
Value
formula | 
 formula defining the model  | 
lk | 
 conditional log-likelihood value  | 
coefficients | 
 estimate of the regression parameters (including for the lag-response)  | 
vcov | 
 asymptotic variance-covariance matrix for the parameter estimates  | 
scv | 
 matrix of individual scores  | 
J | 
 Hessian of the log-likelihood function  | 
se | 
 standard errors  | 
se2 | 
 robust standard errors that also take into account the first step  | 
Tv | 
 number of time occasions for each unit  | 
Author(s)
Francesco Bartolucci (University of Perugia), Claudia Pigini (University of Ancona "Politecnica delle Marche"), Francesco Valentini (University of Ancona "Politecnica delle Marche")
References
Bartolucci, F. and Nigro, V. (2010), A dynamic model for binary panel data with unobserved heterogeneity admitting a root-n consistent conditional estimator, Econometrica, 78, 719-733.
Bartolucci, F. and Nigro, V. (2012), Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary panel data, Journal of Econometrics, 170, 102-116.
Examples
## Not run: 
# example based on simulated data
data(data_sim)
data_sim = data_sim[1:500,]   # to speed up the example, remove otherwise
id = data_sim$id; yv = data_sim$y; X = cbind(X1=data_sim$X1,X2=data_sim$X2)
# estimate dynmic logit model
out = cquad_pseudo(id,yv,X, Ttol=10)
summary(out)
## End(Not run)