cquad {cquad} | R Documentation |
Interface for functions fitting different versions of cquad
Description
Fit by conditional maximum likelihood each of the models in cquad package.
Usage
cquad(formula, data, index = NULL, model = c("basic","equal","extended","pseudo"),
w = rep(1, n), dyn = FALSE, Ttol=10)
Arguments
formula |
formula with the same syntax as in plm package |
data |
data.frame or pdata.frame |
index |
to denote panel structure as in plm package |
model |
type of model = "basic", "equal", "extended", "pseudo" |
w |
vector of weights (optional) |
dyn |
TRUE if in the dynamic version; FALSE for the static version (by default) |
Ttol |
Threshold individual observations that activates the recursive algorithm (default=10) |
Value
formula |
formula defining the model |
lk |
conditional log-likelihood value |
coefficients |
estimate of the regression parameters |
vcov |
asymptotic variance-covariance matrix for the parameter estimates |
scv |
matrix of individual scores |
J |
Hessian of the log-likelihood function |
se |
standard errors |
ser |
robust standard errors |
Tv |
number of time occasions for each unit |
Author(s)
Francesco Bartolucci (University of Perugia), Claudia Pigini (University of Ancona "Politecnica delle Marche"), Francesco Valentini (University of Ancona "Politecnica delle Marche")
Examples
# example based on simulated data
data(data_sim)
data_sim = data_sim[1:500,] # to speed up the example, remove otherwise
# basic (static) model
out1 = cquad(y~X1+X2,data_sim)
summary(out1)
# basic (dynamic) model
out2 = cquad(y~X1+X2,data_sim,dyn=TRUE)
summary(out2)
# equal model
out3 = cquad(y~X1+X2,data_sim,model="equal")
summary(out3)
# extended model
out4 = cquad(y~X1+X2,data_sim,model="extended")
summary(out4)
# psuedo CML for dynamic model
out5 = cquad(y~X1+X2,data_sim,model="pseudo")
summary(out5)