cqr.mm {cqrReg}R Documentation

Composite Quantile Regression (cqr) use Majorize and Minimize (mm) Algorithm

Description

Composite quantile regression find the estimated coefficient which minimize the absolute error for various quantile level. The algorithm majorizing the objective function by a quadratic function followed by minimizing that quadratic.

Usage

cqr.mm(X,y,tau,beta,maxit,toler)

Arguments

X

the design matrix

y

response variable

tau

vector of quantile level

beta

initial value of estimate coefficient (default naive guess by least square estimation)

maxit

maxim iteration (default 200)

toler

the tolerance critical for stop the algorithm (default 1e-3)

Value

a list structure is with components

beta

the vector of estimated coefficient

b

intercept for various quantile level

Note

cqr.mm(x,y,tau) work properly only if the least square estimation is good.

References

David R.Hunter and Kenneth Lange. Quantile Regression via an MM Algorithm,Journal of Computational and Graphical Statistics, 9, Number 1, Page 60–77.

Hui Zou and Ming Yuan(2008). Composite Quantile Regression and the Oracle Model Selection Theory, The Annals of Statistics, 36, Number 3, Page 1108–1126.

Examples

set.seed(1)
n=100
p=2
a=rnorm(n*p, mean = 1, sd =1)
x=matrix(a,n,p)
beta=rnorm(p,1,1)
beta=matrix(beta,p,1)
y=x%*%beta-matrix(rnorm(n,0.1,1),n,1)
tau=1:5/6
# x is 1000*10 matrix, y is 1000*1 vector, beta is 10*1 vector
cqr.mm(x,y,tau)

[Package cqrReg version 1.2.1 Index]