cqr.lasso.admm {cqrReg} | R Documentation |
Composite Quantile Regression (cqr) with Adaptive Lasso Penalty (lasso) use Alternating Direction Method of Multipliers (ADMM) algorithm
Description
The adaptive lasso parameter base on the estimated coefficient without penalty function. Composite quantile regression find the estimated coefficient which minimize the absolute error for various quantile level. The problem is well suited to distributed convex optimization and is based on Alternating Direction Method of Multipliers (ADMM) algorithm .
Usage
cqr.lasso.admm(X,y,tau,lambda,rho,beta,maxit)
Arguments
X |
the design matrix |
y |
response variable |
tau |
vector of quantile level |
lambda |
The constant coefficient of penalty function. (default lambda=1) |
rho |
augmented Lagrangian parameter |
beta |
initial value of estimate coefficient (default naive guess by least square estimation) |
maxit |
maxim iteration (default 200) |
Value
a list
structure is with components
beta |
the vector of estimated coefficient |
b |
intercept |
Note
cqr.lasso.admm(x,y,tau) work properly only if the least square estimation is good.
References
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein.(2010) Distributed Optimization and Statistical Learning via the Alternating Direction. Method of Multipliers Foundations and Trends in Machine Learning, 3, No. 1, 1–122
Hui Zou and Ming Yuan(2008). Composite Quantile Regression and the Oracle Model Selection Theory, The Annals of Statistics, 36, Number 3, Page 1108–1126.
Examples
set.seed(1)
n=100
p=2
a=2*rnorm(n*2*p, mean = 1, sd =1)
x=matrix(a,n,2*p)
beta=2*rnorm(p,1,1)
beta=rbind(matrix(beta,p,1),matrix(0,p,1))
y=x%*%beta-matrix(rnorm(n,0.1,1),n,1)
tau=1:5/6
# x is 1000*20 matrix, y is 1000*1 vector, beta is 20*1 vector with last ten zero value elements.
cqr.lasso.admm(x,y,tau)