QR.mm {cqrReg} | R Documentation |
Quantile Regression (QR) use Majorize and Minimize (mm) algorithm
Description
The algorithm majorizing the objective function by a quadratic function followed by minimizing that quadratic.
Usage
QR.mm(X,y,tau,beta,maxit,toler)
Arguments
X |
the design matrix |
y |
response variable |
tau |
quantile level |
beta |
initial value of estimate coefficient (default naive guess by least square estimation) |
maxit |
maxim iteration (default 200) |
toler |
the tolerance critical for stop the algorithm (default 1e-3) |
Value
a list
structure is with components
beta |
the vector of estimated coefficient |
b |
intercept |
Note
QR.mm(x,y,tau) work properly only if the least square estimation is good.
References
David R.Hunter and Kenneth Lange. Quantile Regression via an MM Algorithm, Journal of Computational and Graphical Statistics, 9, Number 1, Page 60–77
Examples
set.seed(1)
n=100
p=2
a=rnorm(n*p, mean = 1, sd =1)
x=matrix(a,n,p)
beta=rnorm(p,1,1)
beta=matrix(beta,p,1)
y=x%*%beta-matrix(rnorm(n,0.1,1),n,1)
# x is 1000*10 matrix, y is 1000*1 vector, beta is 10*1 vector
QR.mm(x,y,0.1)
[Package cqrReg version 1.2.1 Index]