QR.lasso.ip {cqrReg} | R Documentation |
Quantile Regression (QR) with Adaptive Lasso Penalty (lasso) use Interior Point (ip) Method
Description
The function use the interior point method from quantreg to solve the quantile regression problem.
Usage
QR.lasso.ip(X,y,tau,lambda)
Arguments
X |
the design matrix |
y |
response variable |
tau |
quantile level |
lambda |
The constant coefficient of penalty function. (default lambda=1) |
Value
a list
structure is with components
beta |
the vector of estimated coefficient |
b |
intercept |
lambda |
The constant coefficient of penalty function. (default lambda=1) |
Note
Need to install quantreg package from CRAN.
References
Koenker, R. and S. Portnoy (1997). The Gaussian Hare and the Laplacian Tortoise: Computability of squared-error vs. absolute-error estimators, with discussion, Statistical Science, 12, 279-300.
Wu, Yichao and Liu, Yufeng (2009). Variable selection in quantile regression. Statistica Sinica, 19, 801–817.
Examples
set.seed(1)
n=100
p=2
a=2*rnorm(n*2*p, mean = 1, sd =1)
x=matrix(a,n,2*p)
beta=2*rnorm(p,1,1)
beta=rbind(matrix(beta,p,1),matrix(0,p,1))
y=x%*%beta-matrix(rnorm(n,0.1,1),n,1)
# x is 1000*20 matrix, y is 1000*1 vector, beta is 20*1 vector with last ten zero value elements.
#you should install Rmosek first to run following command
#QR.lasso.ip(x,y,0.1)
[Package cqrReg version 1.2.1 Index]