QR.cd {cqrReg} | R Documentation |
Quantile Regression (QR) use Coordinate Descent (cd) Algorithms
Description
The algorithm base on greedy coordinate descent and Edgeworth's for ordinary l_1
regression.
Usage
QR.cd(X,y,tau,beta,maxit,toler)
Arguments
X |
the design matrix |
y |
response variable |
tau |
quantile level |
beta |
initial value of estimate coefficient (default naive guess by least square estimation) |
maxit |
maxim iteration (default 200) |
toler |
the tolerance critical for stop the algorithm (default 1e-3) |
Value
a list
structure is with components
beta |
the vector of estimated coefficient |
b |
intercept |
Note
QR.cd(x,y,tau) work properly only if the least square estimation is good.
References
Wu, T.T. and Lange, K. (2008). Coordinate Descent Algorithms for Lasso Penalized Regression. Annals of Applied Statistics, 2, No 1, 224–244.
Koenker, Roger. Quantile Regression, New York, 2005. Print.
Examples
set.seed(1)
n=100
p=2
a=rnorm(n*p, mean = 1, sd =1)
x=matrix(a,n,p)
beta=rnorm(p,1,1)
beta=matrix(beta,p,1)
y=x%*%beta-matrix(rnorm(n,0.1,1),n,1)
# x is 1000*10 matrix, y is 1000*1 vector, beta is 10*1 vector
QR.cd(x,y,0.1)
[Package cqrReg version 1.2.1 Index]