QR.admm {cqrReg} | R Documentation |
Quantile Regression (QR) use Alternating Direction Method of Multipliers (ADMM) algorithm
Description
The problem is well suited to distributed convex optimization and is based on Alternating Direction Method of Multipliers (ADMM) algorithm .
Usage
QR.admm(X,y,tau,rho,beta, maxit, toler)
Arguments
X |
the design matrix |
y |
response variable |
tau |
quantile level |
rho |
augmented Lagrangian parameter |
beta |
initial value of estimate coefficient (default naive guess by least square estimation) |
maxit |
maxim iteration (default 200) |
toler |
the tolerance critical for stop the algorithm (default 1e-3) |
Value
a list
structure is with components
beta |
the vector of estimated coefficient |
b |
intercept |
Note
QR.admm(x,y,tau) work properly only if the least square estimation is good.
References
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein.(2010) Distributed Optimization and Statistical Learning via the Alternating Direction.Method of Multipliers Foundations and Trends in Machine Learning, 3, No.1, 1–122
Koenker, Roger. Quantile Regression, New York, 2005. Print.
Examples
set.seed(1)
n=100
p=2
a=rnorm(n*p, mean = 1, sd =1)
x=matrix(a,n,p)
beta=rnorm(p,1,1)
beta=matrix(beta,p,1)
y=x%*%beta-matrix(rnorm(n,0.1,1),n,1)
# x is 1000*10 matrix, y is 1000*1 vector, beta is 10*1 vector
QR.admm(x,y,0.1)