QR.admm {cqrReg}R Documentation

Quantile Regression (QR) use Alternating Direction Method of Multipliers (ADMM) algorithm

Description

The problem is well suited to distributed convex optimization and is based on Alternating Direction Method of Multipliers (ADMM) algorithm .

Usage

QR.admm(X,y,tau,rho,beta, maxit, toler)

Arguments

X

the design matrix

y

response variable

tau

quantile level

rho

augmented Lagrangian parameter

beta

initial value of estimate coefficient (default naive guess by least square estimation)

maxit

maxim iteration (default 200)

toler

the tolerance critical for stop the algorithm (default 1e-3)

Value

a list structure is with components

beta

the vector of estimated coefficient

b

intercept

Note

QR.admm(x,y,tau) work properly only if the least square estimation is good.

References

S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein.(2010) Distributed Optimization and Statistical Learning via the Alternating Direction.Method of Multipliers Foundations and Trends in Machine Learning, 3, No.1, 1–122

Koenker, Roger. Quantile Regression, New York, 2005. Print.

Examples

set.seed(1)
n=100
p=2
a=rnorm(n*p, mean = 1, sd =1)
x=matrix(a,n,p)
beta=rnorm(p,1,1)
beta=matrix(beta,p,1)
y=x%*%beta-matrix(rnorm(n,0.1,1),n,1)
# x is 1000*10 matrix, y is 1000*1 vector, beta is 10*1 vector
QR.admm(x,y,0.1)

[Package cqrReg version 1.2.1 Index]