weib_cdfsim {cpsurvsim} | R Documentation |
Inverse CDF simulation for the Weibull change-point hazard distribution
Description
weib_cdfsim
simulates time-to-event data from the Weibull change-point
hazard distribution by implementing the inverse CDF method.
Usage
weib_cdfsim(n, endtime, gamma, theta, tau = NA)
Arguments
n |
Sample size |
endtime |
Maximum study time, point at which all participants are censored |
gamma |
Shape parameter |
theta |
Scale parameter |
tau |
Change-point(s) |
Details
This function simulates data from the Weibull change-point hazard distribution
with K
change-points by simulating values of the exponential distribution and
substituting them into the inverse hazard function. This method applies Type I
right censoring at the endtime specified by the user. This function allows for
up to four change-points and \gamma
is held constant.
Value
Dataset with n participants including a survival time and censoring indicator (0 = censored, 1 = event).
Examples
nochangepoint <- weib_cdfsim(n = 10, endtime = 20, gamma = 2,
theta = 0.5)
onechangepoint <- weib_cdfsim(n = 10, endtime = 20, gamma = 2,
theta = c(0.05, 0.01), tau = 10)
twochangepoints <- weib_cdfsim(n = 10, endtime = 20, gamma = 2,
theta = c(0.05, 0.01, 0.05), tau = c(8, 12))
#' # Pay attention to how you parameterize your model!
# This simulates an increasing hazard
set.seed(9945)
increasingHazard <- weib_cdfsim(n = 100, endtime = 20, gamma = 2,
theta = c(0.001, 0.005, 0.02), tau = c(8, 12))
# This tries to fit a decreasing hazard, resulting in biased estimates
cp2.nll <- function(par, tau = tau, gamma = gamma, dta = dta){
theta1 <- par[1]
theta2 <- par[2]
theta3 <- par[3]
ll <- (gamma - 1) * sum(dta$censor * log(dta$time)) +
log(theta1) * sum((dta$time < tau[1])) +
log(theta2) * sum((tau[1] <= dta$time) * (dta$time < tau[2])) +
log(theta3) * sum((dta$time >= tau[2]) * dta$censor) -
(theta1/gamma) * sum((dta$time^gamma) * (dta$time < tau[1]) +
(tau[1]^gamma) * (dta$time >= tau[1])) -
(theta2/gamma) * sum((dta$time^gamma - tau[1]^gamma) *
(dta$time >= tau[1]) * (dta$time<tau[2]) +
(tau[2]^gamma - tau[1]^gamma) * (dta$time >= tau[2])) -
(theta3/gamma) * sum((dta$time^gamma - tau[2]^gamma) *
(dta$time >= tau[2]))
return(-ll)
}
optim(par = c(0.2, 0.02, 0.01), fn = cp2.nll,
tau = c(8, 12), gamma = 2,
dta = increasingHazard)
[Package cpsurvsim version 1.2.2 Index]