cpss.meanvar {cpss} | R Documentation |
Detecting changes in mean and (co)variance
Description
Detecting changes in mean and (co)variance
Usage
cpss.meanvar(
dataset,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2
)
Arguments
dataset |
a numeric matrix of dimension |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
Value
cpss.meanvar
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500):1590–1598. Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
Examples
library("cpss")
if (!requireNamespace("MASS", quietly = TRUE)) {
stop("Please install the package \"MASS\".")
}
set.seed(666)
n <- 1000
tau <- c(200, 400, 600, 800)
mu <- list(rep(0, 2), rep(1, 2), rep(1, 2), rep(0, 2), rep(0, 2))
Sigma <- list(diag(2), diag(2), matrix(c(1,-1,-1, 4), 2), matrix(c(1, 0.5, 0.5, 1), 2), diag(2))
seg_len <- diff(c(0, tau, n))
y <- lapply(seq(1, length(tau) + 1), function(k) {
MASS::mvrnorm(n = seg_len[k], mu = mu[[k]], Sigma = Sigma[[k]])
})
y <- do.call(rbind, y)
res <- cpss.meanvar(y, algorithm = "BS", dist_min = 20)
cps(res)
# [1] 211 402 598 804
plot(res, type = "coef")