cpss.mean {cpss} | R Documentation |
Detecting changes in mean
Description
Detecting changes in mean
Usage
cpss.mean(
dataset,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2,
Sigma = NULL
)
Arguments
dataset |
a numeric matrix of dimension |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
Sigma |
if a numeric matrix (or constant) is supplied, it will be taken as the value of the common covariance (or variance). By default it is
|
Value
cpss.mean
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500): 1590–1598. Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
Examples
library("cpss")
set.seed(666)
n <- 2048
tau <- c(205, 267, 308, 472, 512, 820, 902, 1332, 1557, 1598, 1659)
seg_len <- diff(c(0, tau, n))
mu <- rep(c(0, 14.64, -3.66, 7.32, -7.32, 10.98, -4.39, 3.29, 19.03, 7.68, 15.37, 0), seg_len)
ep <- 7 * rnorm(n)
y <- mu + ep
res <- cpss.mean(y, algorithm = "SN", ncps_max = 20)
summary(res)
# 205 267 307 471 512 820 897 1332 1557 1601 1659
plot(res, type = "scatter")
plot(res, type = "path")
out <- update(res, dim_update = 12)
out@cps
# 205 267 307 471 512 820 897 1332 1557 1601 1659 1769
# coef(out)