cpss.lm {cpss} | R Documentation |
Detecting changes in linear models
Description
Detecting changes in linear models
Usage
cpss.lm(
formula,
data = NULL,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2
)
Arguments
formula |
a |
data |
an optional data frame containing the variables in the model. |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
Value
cpss.lm
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500):1590–1598.
Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
Examples
library("cpss")
set.seed(666)
n <- 400
tau <- c(80, 200, 300)
tau_ext <- c(0, tau, n)
be <- list(c(0, 1), c(1, 0.5), c(0, 1), c(-1, 0.5))
seg_len <- diff(c(0, tau, n))
x <- rnorm(n)
mu <- lapply(seq(1, length(tau) + 1), function(k) {
be[[k]][1] + be[[k]][2] * x[(tau_ext[k] + 1):tau_ext[k + 1]]
})
mu <- do.call(c, mu)
sig <- unlist(lapply(seq(1, length(tau) + 1), function(k) {
rep(be[[k]][2], seg_len[k])
}))
y <- rnorm(n, mu, sig)
res <- cpss.lm(
formula = y ~ x,
algorithm = "BS", ncps_max = 10
)
summary(res)
# 80 202 291
coef(res)
# $coef
# [,1] [,2] [,3] [,4]
# [1,] -0.00188792 1.0457718 -0.03963209 -0.9444813
# [2,] 0.91061557 0.6291965 1.20694409 0.4410036
#
# $sigma
# [1] 0.8732233 0.4753216 0.9566516 0.4782329