cpss.glm {cpss} | R Documentation |
Detecting changes in GLMs
Description
Detecting changes in GLMs
Usage
cpss.glm(
formula,
family,
data = NULL,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2
)
Arguments
formula |
a |
family |
a description of the error distribution and link function to be used in the model, which can be a character string naming a family function or a family function. |
data |
an optional data frame containing the variables in the model. |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
Value
cpss.glm
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500):1590–1598.
Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
Examples
library("cpss")
set.seed(666)
n <- 200
size <- rpois(n, 20 - 1) + 1
tau <- c(75, 100, 175)
tau_ext <- c(0, tau, n)
be <- list(c(0, 0.5), c(0, -0.5), c(0.5, -0.5), c(-0.5, -0.5))
seg_len <- diff(c(0, tau, n))
x <- rnorm(n)
eta <- lapply(seq(1, length(tau) + 1), function(k) {
be[[k]][1] + be[[k]][2] * x[(tau_ext[k] + 1):tau_ext[k + 1]]
})
eta <- do.call(c, eta)
p <- 1 / (1 + exp(-eta))
y <- rbinom(n, size = size, prob = p)
pelt_pen_val <- (log(n))^seq(0.5, 2, by = 0.1)
res <- cpss.glm(
formula = cbind(y, size - y) ~ x, family = binomial(),
algorithm = "PELT", pelt_pen_val = pelt_pen_val, ncps_max = 10
)
summary(res)
# 75 105 175
coef(res)
# [1,] 0.02540872 0.08389551 0.5284425 -0.4980768
# [2,] 0.57222684 -0.45430385 -0.5203319 -0.4581678