chisq.test2 {cpd} | R Documentation |
Pearson's Chi-squared Test for Count Data
Description
chisq.test2
performs Pearson chi-squared goodness-of-fit test for count data
Usage
chisq.test2(obs, p.esp, npar = NULL, grouping = FALSE)
Arguments
obs |
a numeric vector with the counts |
p.esp |
a numeric vector with the expected probabilities of the same length of |
npar |
an integer specifying the number of parameters of the model. By default |
grouping |
a logical indicating whether to group in classes with expected frequency greater than or equal to 5. By default |
Value
A list with class "htest"
containing the following components:
-
statistic
: the value of the chi-squared test statistic. -
df
: the degrees of freedom of the approximate chi-squared distribution. -
p.value
: the p-value for the test. -
observed
: the observed counts. -
observed.grouped
: the observed counts grouped in classes with expected frequency greather or equal to 5. -
expected
: the expected counts under the null hypothesis. -
expected.grouped
: the expected counts under the null hypothesis grouped in classes with expected frequency greather or equal to 5. -
residuals
: the Pearson residuals computed as(observed - expected) / sqrt(expected)
.
Examples
set.seed(123)
x <- rctp(500, -1.5, 1, 2)
table(x)
obs <- c(172, 264, 57, 6, 0, 1)
fit <- fitctp(x)
p.esp <- c(dctp(0:(length(obs)-1),fit$coefficients[1],fit$coefficients[2],
fit$coefficients[3])[1:(length(obs)-1)],1-sum(dctp(0:(length(obs)-1),
fit$coefficients[1],fit$coefficients[2],fit$coefficients[3])[1:(length(obs)-1)]))
chisq.test2(obs, p.esp)
chisq.test2(obs, p.esp, grouping = TRUE)
chisq.test2(obs, npar= 3, p.esp)