coxseiexp {coxsei} | R Documentation |
CoxSEI model with exponential function
Description
fit CoxSEI model using an exponential excitation function
Usage
coxseiexp(Y, delta, id, Z, par.init, m = 2, mit = 1000, tr = TRUE,
method = "L-BFGS-B",lower=c(rep(-Inf,ncol(Z)),-Inf,0),
upper=rep(Inf,ncol(Z) + 2),...)
Arguments
Y |
the observed times (including censoring times) |
delta |
indicator of event: 1=event, 0=censoring |
id |
the id of the individual/group the event/censoring corresponds to |
Z |
covariate matrix |
par.init |
initial parameter value to start the iteration |
m |
the lag parameter as in M-dependence |
mit |
maximum number of iteration allowed in maximizing the loag partial likelihood |
tr |
should the optimization process be 'tr'aced |
method |
method of optimization; defaults to "L-BFGS-B" |
lower |
vector of lower boundary values of the parameter space |
upper |
vector of upper boundary of the parameter space |
... |
other arguments to be passed to the optimization routine |
Value
an object of class "coxsei", basically a list with components
coefficients |
a named vector of coefficients |
vcov |
a symmetric matrix which is supposed to be positive definite when m>0, or with the (np-2)x(np-2) major submatrix positive definite when m=0 |
Author(s)
Feng Chen <feng.chen@unsw.edu.au>