coxseiInt {coxsei} | R Documentation |
Calculate the estimator of the cumulative baseline intensity function in the CoxSEI model.
Description
It takes the paramter of the parametric part (or its theorized value) and calculate the values of the estimator at the jump times; it also gives the values of the estimator for the variance of the intensity estimator.
Usage
coxseiInt(dat, parest, hessian=NULL, vcovmat=solve(hessian), m = 2,
gfun = function(x, pa) {
ifelse(x <= 0, 0, pa[1] * pa[2] * exp(-pa[2] * x))
},
gfungrd = function(x, pa){
if(length(x)==0)return(matrix(0,2,0));
rbind(pa[2]*exp(-pa[2]*x),
pa[1]*exp(-pa[2]*x)*(1-pa[2]*x)
)
})
Arguments
dat |
a data frame containing the right-censored counting process data |
parest |
the estimate of parameter of the parametric part of the CoxSEI model |
hessian |
the hessian matrix returned by the optimization procedure in the estimation of the parametric part based on partial likelihood |
vcovmat |
the variance-covariance matrix of the estimator of the the parametric components; defaulted to the inverse of the hessian matrix |
m |
autoregressive order in the excitation part of the intensity |
gfun |
the excitation function; defaults to the exponential decay function |
gfungrd |
derivative/gradient function of the excitation function |
Value
a list giving the jump times and values at these of the estimator of the cumulative baseline intensity function.
x |
the ordered death/event times |
y |
the value of the estimator of the intensity function at the observed death/event times |
varest |
the value of the estimator of the variance of the estimator of the intensity function, at the jump times |
The step function can be obtained using stepfun
, and plotted by setting
type="s"
in the plot
function.
Note
Currently doesn't compute the standard error or variance estimator of the baseline cumulative intensity estimator.
Author(s)
Feng Chen <feng.chen@unsw.edu.au>
Examples
data("dat")
est <- coxseiest3(dat,c(0.2,0.4,0.6,log(0.06),log(5)))
pe <- est$par; pe[4:5] <- exp(pe[4:5]);
ve <- diag(pe) %*% solve(est$hessian, diag(pe));
cintest <- coxseiInt(dat,pe,vcovmat=ve)
plot(cintest,type="s")