| plot.coxphw.predict {coxphw} | R Documentation |
Plot the Relative or Log Relative Hazard Versus Values of a Continuous Covariable.
Description
This function visualizes a nonlinear or a time-dependent effect of a predict.coxphw
object.
Usage
## S3 method for class 'coxphw.predict'
plot(x, addci = TRUE, xlab = NULL, ylab = NULL, ...)
Arguments
x |
an output object of |
addci |
confidence intervalls are obtained. Default is TRUE. |
xlab |
label for x-axis of plot, uses variable specified in |
ylab |
label for y-axis of plot, uses as appropriate either "relative hazard" or "log relative hazard" as default. |
... |
further parameters, to be used for plots (e.g., scaling of axes). |
Details
This function can be used to depict the estimated nonlinear or time-dependent
effect of an object of class predict.coxphw. It supports simple nonlinear
effects as well as interaction effects of continuous variables with binary
covariates (see examples section in predict.coxphw. ).
Value
No output value.
Note
In coxphw version 4.0.0 the old plotshape function is replaced with
predict.coxphw and plot.coxphw.predict.
Author(s)
Georg Heinze, Meinhard Ploner, Daniela Dunkler
References
Royston P and Altman D (1994). Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling. Applied Statistics J R STAT SOC C-APPL 43, 429-467.
Royston P and Sauerbrei W (2008). Multivariable Model-building. A pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. Wiley, Chichester, UK.
See Also
Examples
set.seed(30091)
n <- 300
x <- 1:n
true.func <- function(x) 3 * (x / 100)^{2} - log(x / 100) - 3 * x / 100
x <- round(rnorm(n = x) * 10 + 40, digits = 0)
time <- rexp(n = n, rate = 1) / exp(true.func(x))
event <- rep(x = 1, times = n)
futime <- runif(n = n, min = 0, max = 309000)
event <- (time < futime) + 0
time[event == 0] <- futime[event == 0]
my.data <- data.frame(x, time, event)
fitahr <- coxphw(Surv(time, event) ~ x, data = my.data, template = "AHR")
# estimated function
plotx <- quantile(x, probs = 0.05):quantile(x, probs = 0.95)
plot(predict(fitahr, type = "shape", newx = plotx, refx = median(x), x = "x",
verbose = FALSE))
# true function
lines(x = plotx, true.func(plotx) - true.func(median(plotx)), lty = 2)
legend("topright", legend=c("AHR estimates", "true"), bty = "n", lty = 1:2, inset = 0.05)
# for more examples see predict.coxphw