coxerr {coxerr} | R Documentation |
Cox regression with dependent error in covariates
Description
Estimation methods of Huang and Wang (2018)
Usage
coxerr(t,dlt,wuz,method,initbt=rep(0,dim(as.matrix(wuz))[2]-1),
derr=1e-6)
Arguments
t |
follow-up time. |
dlt |
censoring indicator: 1 - event, 0 - censored. |
wuz |
covariate-related variables: wuz[,1] - mismeasured, wuz[,2] - instrumental variable (IV), wuz[,-c(1,2)] - accurately measured. |
method |
estimation method: 1 - Prop1, 2 - Prop 2. |
initbt |
initial value for the estimate. |
derr |
error tolerance. |
Value
bt |
point estimate. |
va |
estimated variance-covariance matrix. |
succ |
indicator for estimate-finding success. |
Author(s)
Yijian Huang
References
Huang, Y. and Wang, C. Y. (2018) Cox Regression with dependent error in covariates, Biometrics 74, 118–126.
Examples
## simulate a dataset following Scenario 1 of Table 1 in Huang and Wang (2018)
size <- 300
bt0 <- 1
## true covariate
x <- rnorm(size)
## survival time, censoring time, follow-up time, censoring indicator
s <- rexp(size) * exp(-bt0 * x)
c <- runif(size) * ifelse(x <= 0, 4.3, 8.6)
t <- pmin(s, c)
dlt <- as.numeric(s <= c)
## mismeasured covariate with heterogeneous error, IV
w <- x + rnorm(size) * sqrt(pnorm(x) * 2) * 0.5 + 1
u <- x * 0.8 + rnorm(size) * 0.6
wuz <- cbind(w, u)
## estimation using PROP1
fit1 <- coxerr(t, dlt, wuz, 1)
## estimation using PROP2
fit2 <- coxerr(t, dlt, wuz, 2)
[Package coxerr version 1.1 Index]