generate.SIR.model {covid19.analytics} | R Documentation |
function to generate a simple SIR (Susceptible-Infected-Recovered) model based on the actual data of the coivd19 cases
Description
function to generate a simple SIR (Susceptible-Infected-Recovered) model based on the actual data of the coivd19 cases
Usage
generate.SIR.model(
data = NULL,
geo.loc = "Hubei",
t0 = NULL,
t1 = NULL,
deltaT = NULL,
tfinal = 90,
fatality.rate = 0.02,
tot.population = 1.4e+09,
staticPlt = TRUE,
interactiveFig = FALSE,
add.extras = FALSE
)
Arguments
data |
time series dataset to consider |
geo.loc |
country/region to analyze |
t0 |
initial period of time for data consideration |
t1 |
final period of time for data consideration |
deltaT |
interval period of time from t0, ie. number of days to consider since t0 |
tfinal |
total number of days |
fatality.rate |
rate of causality, deafault value of 2 percent |
tot.population |
total population of the country/region |
staticPlt |
optional flag to activate/deactive plotting of the data and the SIR model generated |
interactiveFig |
optional flag to activate/deactive the generation of an interactive plot of the data and the SIR model generated |
add.extras |
boolean flag to add extra indicators, such as, the "force of infection" and time derivatives |
Examples
data <- covid19.data("ts-confirmed")
generate.SIR.model(data,"Hubei", t0=1,t1=15)
generate.SIR.model(data,"Germany",tot.population=83149300)
generate.SIR.model(data,"Uruguay", tot.population=3500000)
generate.SIR.model(data,"Canada", tot.population=37590000, add.extras=TRUE)
[Package covid19.analytics version 2.1.3.3 Index]