matViz {covdepGE} | R Documentation |
Visualize a matrix
Description
Create a visualization of a matrix
Usage
matViz(
x,
color1 = "white",
color2 = "#500000",
grid_color = "black",
incl_val = FALSE,
prec = 2,
font_size = 3,
font_color1 = "black",
font_color2 = "white",
font_thres = mean(x)
)
Arguments
x |
matrix; matrix to be visualized |
color1 |
color; color for low entries. |
color2 |
color; color for high entries. |
grid_color |
color; color of grid lines. |
incl_val |
logical; if |
prec |
positive integer; number of decimal places to round entries to if
|
font_size |
positive numeric; size of font if |
font_color1 |
color; color of font for low entries if |
font_color2 |
color; color of font for high entries if |
font_thres |
numeric; values less than |
Value
Returns ggplot2
visualization of matrix
Examples
## Not run:
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
## End(Not run)