inclusionCurve {covdepGE} | R Documentation |
Plot PIP as a Function of Index
Description
Plot the posterior inclusion probability of an edge between two variables as a function of observation index
Usage
inclusionCurve(
out,
col_idx1,
col_idx2,
line_type = "solid",
line_size = 0.5,
line_color = "black",
point_shape = 21,
point_size = 1.5,
point_color = "#500000",
point_fill = "white"
)
Arguments
out |
object of class |
col_idx1 |
integer in |
col_idx2 |
integer in |
line_type |
linetype; |
line_size |
positive numeric; thickness of the interpolating line.
|
line_color |
color; color of interpolating line. |
point_shape |
shape; shape of the points denoting observation-specific
inclusion probabilities; |
point_size |
positive numeric; size of probability points. |
point_color |
color; color of probability points. |
point_fill |
color; fill of probability points. Only applies to select
shapes. |
Value
Returns ggplot2
visualization of inclusion probability curve
Examples
## Not run:
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
## End(Not run)