mcov {covKCD} | R Documentation |
Matrix-variate covariance matrix
Description
Compute the covariance matrix of a sample of data matrices.
Usage
mcov(Y, use = "everything")
Arguments
Y |
a numeric n*p1*p2 data array corresponding to n data matrices of dimension p1*p2. |
use |
a character string giving method for dealing with missing
values, fed to the |
Value
a p1*p2 by p1*p2 sample covariance matrix of the n vectorized data matrices.
Author(s)
Peter Hoff
Examples
p1<-4 ; p2<-3 ; n<-200
# create a matrix Y with separable covariance
Sig1<-rWishart(1,p1,diag(p1))[,,1]
Sig2<-rWishart(1,p2,diag(p2))[,,1]
Y<-array(rnorm(n*p1*p2),dim=c(n,p1,p2))
Y<-aperm( apply(Y,c(1,3),function(y){ msqrt(Sig1)%*%y } ),c(2,1,3))
Y<-aperm( apply(Y,c(1,2),function(y){ msqrt(Sig2)%*%y } ),c(2,3,1))
# covariance
S<-mcov(Y)
image(S)
plot(S,kronecker(Sig2,Sig1)) ; abline(0,1)
[Package covKCD version 0.1 Index]