mlePath {countprop} | R Documentation |
Maximum Likelihood Estimator Paths
Description
Calculates the maximum likelihood estimates of the parameters for the
mutlinomial logit-Normal distribution under various values
of the penalization parameter lambda
. Parameter lambda
controls
the sparsity of the covariance matrix Sigma
, and penalizes the false
large correlations that may arise in high-dimensional data.
Usage
mlePath(
y,
max.iter = 10000,
max.iter.nr = 100,
tol = 1e-06,
tol.nr = 1e-06,
lambda.gl = NULL,
lambda.min.ratio = 0.1,
n.lambda = 1,
n.cores = 1,
gamma = 0.1
)
Arguments
y |
Matrix of counts; samples are rows and features are columns. |
max.iter |
Maximum number of iterations |
max.iter.nr |
Maximum number of Newton-Raphson iterations |
tol |
Stopping rule |
tol.nr |
Stopping rule for the Newton Raphson algorithm |
lambda.gl |
Vector of penalization parameters lambda, for the graphical lasso penalty |
lambda.min.ratio |
Minimum lambda ratio of the maximum lambda, used for the sequence of lambdas |
n.lambda |
Number of lambdas to evaluate the model on |
n.cores |
Number of cores to use (for parallel computation) |
gamma |
Gamma value for EBIC calculation of the log-likelihood |
Value
The MLE estimates of y
for each element lambda of lambda.gl, (est
);
the value of the estimates which produce the minimum EBIC, (est.min
);
the vector of lambdas used for graphical lasso, (lambda.gl
); the index of
the minimum EBIC (extended Bayesian information criterion), (min.idx
);
vector containing the EBIC for each lambda, (ebic
).
Note
If using parallel computing, consider setting n.cores
to be equal
to the number of lambdas being evaluated for, n.lambda
.
The graphical lasso penalty
is the sum of the absolute value of the elements of the covariance matrix Sigma
.
The penalization parameter lambda controls the sparsity of Sigma.
Examples
data(singlecell)
mle.sim <- mlePath(singlecell, tol=1e-4, tol.nr=1e-4, n.lambda = 2, n.cores = 1)
mu.hat <- mle.sim$est.min$mu
Sigma.hat <- mle.sim$est.min$Sigma