| mlePath {countprop} | R Documentation | 
Maximum Likelihood Estimator Paths
Description
Calculates the maximum likelihood estimates of the parameters for the
mutlinomial logit-Normal distribution under various values
of the penalization parameter lambda. Parameter lambda controls
the sparsity of the covariance matrix Sigma, and penalizes the false
large correlations that may arise in high-dimensional data.
Usage
mlePath(
  y,
  max.iter = 10000,
  max.iter.nr = 100,
  tol = 1e-06,
  tol.nr = 1e-06,
  lambda.gl = NULL,
  lambda.min.ratio = 0.1,
  n.lambda = 1,
  n.cores = 1,
  gamma = 0.1
)
Arguments
y | 
 Matrix of counts; samples are rows and features are columns.  | 
max.iter | 
 Maximum number of iterations  | 
max.iter.nr | 
 Maximum number of Newton-Raphson iterations  | 
tol | 
 Stopping rule  | 
tol.nr | 
 Stopping rule for the Newton Raphson algorithm  | 
lambda.gl | 
 Vector of penalization parameters lambda, for the graphical lasso penalty  | 
lambda.min.ratio | 
 Minimum lambda ratio of the maximum lambda, used for the sequence of lambdas  | 
n.lambda | 
 Number of lambdas to evaluate the model on  | 
n.cores | 
 Number of cores to use (for parallel computation)  | 
gamma | 
 Gamma value for EBIC calculation of the log-likelihood  | 
Value
The MLE estimates of y for each element lambda of lambda.gl, (est);
the value of the estimates which produce the minimum EBIC, (est.min);
the vector of lambdas used for graphical lasso, (lambda.gl); the index of
the minimum EBIC (extended Bayesian information criterion), (min.idx);
vector containing the EBIC for each lambda, (ebic).
Note
If using parallel computing, consider setting n.cores to be equal
to the number of lambdas being evaluated for, n.lambda.
The graphical lasso penalty
is the sum of the absolute value of the elements of the covariance matrix Sigma.
The penalization parameter lambda controls the sparsity of Sigma.
Examples
data(singlecell)
mle.sim <- mlePath(singlecell, tol=1e-4, tol.nr=1e-4, n.lambda = 2, n.cores = 1)
mu.hat <- mle.sim$est.min$mu
Sigma.hat <- mle.sim$est.min$Sigma