| mleLR {countprop} | R Documentation |
Maximum Likelihood Estimate for multinomial logit-normal model
Description
Returns the maximum likelihood estimates of multinomial logit-normal model parameters given a count-compositional dataset. The MLE procedure is based on the multinomial logit-Normal distribution, using the EM algorithm from Hoff (2003).
Usage
mleLR(
y,
max.iter = 10000,
max.iter.nr = 100,
tol = 1e-06,
tol.nr = 1e-06,
lambda.gl = 0,
gamma = 0.1,
verbose = FALSE
)
Arguments
y |
Matrix of counts; samples are rows and features are columns. |
max.iter |
Maximum number of iterations |
max.iter.nr |
Maximum number of Newton-Raphson iterations |
tol |
Stopping rule |
tol.nr |
Stopping rule for the Newton-Raphson algorithm |
lambda.gl |
Penalization parameter lambda, for the graphical lasso penalty. Controls the sparsity of Sigma |
gamma |
Gamma value for EBIC calculation of the log-likelihood |
verbose |
If TRUE, print information as the functions run |
Value
The additive log-ratio of y (v); maximum likelihood estimates of
mu, Sigma, and Sigma.inv;
the log-likelihood (log.lik); the EBIC (extended Bayesian information criterion)
of the log-likelihood of the multinomial logit-Normal model with the
graphical lasso penalty (ebic); degrees of freedom of the Sigma.inv
matrix (df).
Note
The graphical lasso penalty
is the sum of the absolute value of the elements of the covariance matrix Sigma.
The penalization parameter lambda controls the sparsity of Sigma.
This function is also used within the mlePath() function.
Examples
data(singlecell)
mle <- mleLR(singlecell)
mle$mu
mle$Sigma
mle$ebic