| ebic {countprop} | R Documentation | 
Extended Bayesian Information Criterion
Description
Calculates the Extended Bayesian Information Criterion (EBIC) of a model. Used for model selection to asses the fit of the multinomial logit-Normal model which includes a graphical lasso penalty.
Usage
ebic(l, n, d, df, gamma)
Arguments
l | 
 Log-likelihood estimates of the model  | 
n | 
 Number of rows of the data set for which the log-likelihood has been calculated  | 
d | 
 The size of the (k-1) by (k-1) covariance matrix of a k by k count-compositional data matrix  | 
df | 
 Degrees of freedom  | 
gamma | 
 A tuning parameter. Larger values means more penalization  | 
Value
The value of the EBIC.
Note
The graphical lasso penalty
is the sum of the absolute value of the elements of the covariance matrix Sigma.
The penalization parameter lambda controls the sparsity of Sigma.
Examples
data(singlecell)
mle <- mleLR(singlecell, lambda.gl=0.5)
log.lik_1 <- mle$est[[1]]$log.lik
n <- NROW(singlecell)
k <- NCOL(singlecell)
df_1 <- mle$est[[1]]$df
ebic(log.lik_1, n, k, df_1, 0.1)
[Package countprop version 1.0.1 Index]