countgmifs-package {countgmifs}R Documentation

Discrete Response Regression for High-Dimensional Data: Discrete Response Generalized Monotone Incremental Forward Stagewise Regression

Description

This package provides a function that fits a Poisson or negative binomial model when the number of parameters exceeds the sample size, using the the generalized monotone incremental forward stagewise method.

Details

The DESCRIPTION file:

Package: countgmifs
Title: Discrete Response Regression for High-Dimensional Data
Version: 0.0.2
Authors@R: person("Kellie", "Archer", email = "archer.43@osu.edu", role = c("aut", "cre"))
Description: Provides a function for fitting Poisson and negative binomial regression models when the number of parameters exceeds the sample size, using the the generalized monotone incremental forward stagewise method.
Depends: R (>= 3.5.0), MASS
License: GPL (>=2)
Encoding: UTF-8
LazyData: true
RoxygenNote: 6.0.1.9000
Author: Kellie Archer [aut, cre]
Maintainer: Kellie Archer <archer.43@osu.edu>

Index of help topics:

coef.countgmifs         Extract Model Coefficients.
countgmifs              Discrete Response Generalized Monotone
                        Incremental Forward Stagewise Regression.
countgmifs-package      Discrete Response Regression for
                        High-Dimensional Data: Discrete Response
                        Generalized Monotone Incremental Forward
                        Stagewise Regression
plot.countgmifs         Plot Solution Path for a Count GMIFS Fitted
                        Model.
predict.countgmifs      Predict Outcome for Count GMIFS Fitted Model.
print.countgmifs        Print the Contents of a Count GMIFS Fitted
                        Object.
summary.countgmifs      Summarize a Count GMIFS Object.

This package contains functions for fitting a penalized discrete response model (either negative binomial or Poisson) and extracting estimated coefficients, predictions, and plots. The model and methods can be used when the response to be predicted is discrete, and is particularly relevant when there are more covariates than observations.

Author(s)

NA Kellie J. Archer <archer.43@osu.edu>

Maintainer: NA Kellie J. Archer <archer.43@osu.edu>

References

Makowski M., Archer K.J. (2015) Generalized monotone incremental forward stagewise method for modeling count data: application predicting micronuclei frequency. Cancer Informatics, 14(Suppl 2), 97–105.


[Package countgmifs version 0.0.2 Index]