CounterfactualMethodRegr {counterfactuals} | R Documentation |
Base class for Counterfactual Explanation Methods for Regression Tasks
Description
Abstract base class for counterfactual explanation methods for regression tasks.
CounterfactualMethodRegr
can only be initialized for regression tasks. Child classes inherit the (public)
$find_counterfactuals()
method, which calls a (private) $run()
method. This $run()
method should be implemented
by the child classes and return the counterfactuals as a data.table
(preferably) or a data.frame
.
Inheritance
Child classes: MOCRegr, WhatIfRegr, NICERegr
Super class
counterfactuals::CounterfactualMethod
-> CounterfactualMethodRegr
Methods
Public methods
Inherited methods
Method new()
Creates a new CounterfactualMethodRegr object.
Usage
CounterfactualMethodRegr$new( predictor, lower = NULL, upper = NULL, distance_function = NULL )
Arguments
predictor
(Predictor)
The object (created withiml::Predictor$new()
) holding the machine learning model and the data.lower
(
numeric()
|NULL
)
Vector of minimum values for numeric features. IfNULL
(default), the element for each numeric feature inlower
is taken as its minimum value inpredictor$data$X
. If notNULL
, it should be named with the corresponding feature names.upper
(
numeric()
|NULL
)
Vector of maximum values for numeric features. IfNULL
(default), the element for each numeric feature inupper
is taken as its maximum value inpredictor$data$X
. If notNULL
, it should be named with the corresponding feature names.distance_function
(
function()
|NULL
)
A distance function that may be used by the leaf classes. If specified, the function must have three arguments:x
,y
, anddata
and return adouble
matrix withnrow(x)
rows andnrow(y)
columns.
Method find_counterfactuals()
Runs the counterfactual method and returns the counterfactuals.
It searches for counterfactuals that have a predicted outcome in the interval desired_outcome
.
Usage
CounterfactualMethodRegr$find_counterfactuals(x_interest, desired_outcome)
Arguments
x_interest
(
data.table(1)
|data.frame(1)
)
A single row with the observation of interest.desired_outcome
(
numeric(1)
|numeric(2)
)
The desired predicted outcome. It can be a numeric scalar or a vector with two numeric values that specify an outcome interval. A scalar is internally converted to an interval.
Returns
A Counterfactuals object containing the results.
Method clone()
The objects of this class are cloneable with this method.
Usage
CounterfactualMethodRegr$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.