Zero one inflated Poisson {countDM} | R Documentation |
MLE of the zero one inflated Poisson distrubution
Description
Evaluates the MLE of the zero one inflated Poisson (ZOIP)distribtion.
f\left(X=x\mid\alpha,\,\beta,\,\theta\right)=\begin{cases}
\alpha+\left(1-\alpha-\beta\right)e^{-\theta}, & x=0\\
\beta+\left(1-\alpha-\beta\right)\theta e^{-\theta}, & x=1\\
\left(1-\alpha-\beta\right)e^{-\theta}\frac{\theta^{x}\,}{x!}, & x=2,3,\dots
\end{cases}
where \theta>0
, the two parameters \alpha\in(0,1)
and \beta\in(0,1)
, respectively denotes the unknown proportion for incorporating extra zeros and extra ones than those allowed by the traditional Poisson distribution.
Usage
mle_zoip (x, alpha, beta, theta)
Arguments
x |
A vector of (non-negative integer) values, discrete values. |
alpha |
A vector of (non-negative integer) values, |
beta |
A vector of (non-negative integer) values, |
theta |
A vector of (non-negative integer) values, |
Details
The function allows to estimate the unknown parameter of the ZOIP distribution with standard error of the estimate and model selection measure, the Akaike information criterion (AIC).
Value
mle_zoip gives the MLE along with standard error of the estimate and model selction measure AIC.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir <mht@iub.edu.pk>.
References
Zhang, C., Tian, G. L., & Ng, K. W. (2016). Properties of the zero-and-one inflated Poisson distribution and likelihood-based inference methods. Statistics and its interface, 9(1), 11-32.
Tang, Y., Liu, W., & Xu, A. (2017). Statistical inference for zero-and-one-inflated Poisson models. Statistical Theory and Related Fields, 1(2), 216-226.
Alshkaki, R. S. A. (2016). On the zero-one inflated Poisson distribution. Int J Stat Distrib Appl, 2(4), 42-8.
See Also
Examples
x <- data_sbirth
mle_zoip (x, 0.2,0.1, 0.5)